
INTRODUCTION
raditionally, objects and phenomena are described by using
different measurements, called dimensions. (The word

dimension is derived from the Latin word dimensio, which means
measure.) For instance, let us assume that we want to complete-
ly characterize some ordinary object as, for instance, a tree. To
achieve that, we have to measure its height, width, length, num-
ber of branches and subbranches, color, density, etc. We need a
number of different descriptors if we intend to characterize an
object as well as possible. The most familiar dimension is the
Euclidean one, DE, known and used since more than 2,300 years
ago. The second one is known as the topological dimension, DT.
They both can assume only the integer values 0, 1, 2, 3, and in
most cases they are used as synonymous since for many objects
they can be the same (1). But some differences exist as we will
describe in short. (Truth to say, many authors do not distinguish
the topological and the Euclidean dimension.)
The topological dimension is defined regarding the way how an

observed object can be divided, while the Euclidean one consid-
ers the space occupied by an object. For instance, the point is
dimensionless, since the point is not a continuum and, thus, both

Euclidean and topological dimensions are the same, DE=DT=0.
Regarding the line and other figures the differences between these
dimensions arise. From the topological point of view the line has
the dimension DT=1, irrespective of the shape of the line, since it
can be divided by points that are not continua. Similarly, to divide
surfaces, curves are necessary. So, the topological dimension of
surface is DT=2, and, in a similar way, the topological dimension
of a space is DT=3, since to divide space, surfaces are neces-
sary. According to the Euclidean definition, a structure is called
one dimensional (1D) if it is embedded on a straight-line, two
dimensional (2D) if it is embedded on a plane, and three dimen-
sional (3D) if it is embedded in space. From this definition only the
straight line is one dimensional, DE=1, since it does not occupy
either the plane or the space. But, the curve line lying in the plane
has the dimension DE=2 while the complex curve lying in the
space is three dimensional, DE=3. Also, the flat surface is two
dimensional, DE=2, but non-flat surface can be assumed as three
dimensional, see Figure 1. 
Artificial objects are characterized by smoothness and structural
regularity. The description of such objects is quite easy by using
an adequate dimension. The object dimension can be measured
and numerically described by comparing it with some referent
sample measure unit. For instance, the weight can be derived
comparing it with the reference weight of 1 kg, the length - by
comparing it with 1 m, etc. But, also, the curve length can be
derived analytically, through the line integral, the surface area can
be derived from the surface integral, the volume and/or the object
weight can be derived from an appropriate volume integral, etc.
Certainly, the use of integrals assumes that the corresponding
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function is differentiable. The Euclidean geometry was the basic
concept used in designing, constructing and describing all artifi-
cial objects during many centuries.
Today, measuring of length, area and volume appears to be no
problem. As an illustrative example consider a classic smooth
object as, for instance, a telephone wire of the length of 1,823.25
m. Then, by using different measure units we will obtain only dif-
ferent precision of measured length; particularly, if the unit is 100
m, the length of "more than 1,800m = 18x100m" will be
obtained; if the unit is 10m, the length of "more than
1,820m=182x10m" will be reached, etc. By using smaller and
smaller measure units more precise length is obtained, converg-
ing to the finite value.
But, what is with irregular shaped objects such as a coast line?
The famous Mandelbrot's paper printed in 1967, "How long is the
coast of Britain? Statistical self-similarity and fractional dimen-
sion" (1), demonstrated that the classic way of measuring the
length is useless in this case - the measured length strongly
depends on the measure unit applied1. The smaller the measure
units the longer the resulting measurement will be. Conversely, a
regularly shaped object such as, for instance, a circle of diameter
d, has finite perimeter P. Depending on the measure unit used
only the accuracy of the measured perimeter varies, but the

length converges to the limiting value of P=pd.
The coastline exhibits classic self-similar (or, fractal) behavior.
By observing the structure of the coastline in different scales
(almost) the same shape arises. Analytically speaking, the coast-
line is not differentiable in all points and, thus, the line integral is
not defined. The difference between fractal and smooth line is
illustrated in Figure 2.

The word fractal, introduced by Mandelbrot, the Polish born
mathematicien, is derived from the Latin adjective fractus (bro-
ken). This term was used to describe the irregular structure of
many natural objects and phenomena. Simple fractal rules can
often describe these structures in a way that conventional tech-
niques cannot (1-3).
The central philosophical theme of fractal geometry is that nature
- despite its complexity - exhibits a fundamental property gener-
ally known as self-similarity (2). That means, however a complex
the shape and/or dynamic behavior of a system, by observing it
carefully and imaginatively enough, one can find features in one
scale which resemble those at other scales. Remeber the struc-
ture of the tree, for instance. If we break a branch from the tree,
its shape has similar structure but to a smaller scale. By breaking
a twig from the branch the structure repeats, etc. A similar struc-
tural behavior can be found by observing a cloud, some vegeta-
bles (cauliflower, broccoli), venous and arterial system, nervous
system, the Earth relief, trends in economy, etc. Also, self-similar
structures can be generated artificially, by using some predeter-
mined rules. This kind of self-similarity has found significant
place in modern art, but also in science and technique. As an
illustrative example, in Figure 3 the fractal coast - as a remarkable
example of self-similar structure - is depicted. Starting from the
upper left image, by magnifying its central part (within the white
rectangle), after six iterations exactly the same initial structure is
obtained. That means, this structure is self-similar of infinite com-
plexity (1).
The self-similarity is clearly not a new concept and most of us
have at some stage thought in this way. The origin of this aspect
of mathematics is associated with a number of specialists dating
from the middle of the nineteenth century2, but the systematic
approach and, consequently, the completely new concept of
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Figure 1. Examples describing differences between topological and Euclidean
dimension

Figure 2. Difference between (a) fractal and (b) smooth line



geometry, is introduced by Mandelbrot. Having in mind Cantor's
words "The art of asking the right questions in mathematics is
more important than the art of solving them", it is not surprising
why Benoit Mandelbrot is characterized as the "father of fractal
geometry" (1). 
Artificially generated fractals, by applying precise algorithms and
rules, exhibit hard fractal behavior, as we will describe in next
section. Conversely, natural objects and phenomena, do not
exhibit so strict fractal behavior even when they are classified as
fractals (for instance, the cauliflower). Natural objects have sta-
tistical self-similarity: by observing their structure in different
scales the similar but not exactly the same structure is obtained.
In this case we will consider multifractals rather than fractals.
Multifractal parameters, used for describing such structures, can
be applied in the object classification (4), enabling a new
approach in investigation many phenomena, besides others in
medical diagnosis.
The paper is organized as follows. In next two sections a brief
review of fractals and multifractals is exposed. In the last section
the application of fractals and multifractals in medical signal
analysis, particularly in medical image analysis, is explained, in
brief.

DESCRIPTIONS OF FRACTAL GEOMETRY

A. Fractal objects and signals
Measuring, describing and comparing different objects is usually
made by using some dimensions, as we noted earlier. But, how
to measure fractals? Recall that a point is dimensionless, its
Euclidean dimension being DE=0. But, observe a series of adja-
cent points, as in Figure 4. If the distance d between adjacent
points is small enough, the obtained structure is line-like. What is
the dimension of this structure? When the distance approaches to
zero, d®0, the continuous line will be obtained, having the
dimension of 1. So, the discrete structure depicted in the middle
of Figure 4 has the non-integer dimension (fractal dimension)
between the limiting values 0 and 1. Such a structure is known as

a fractal dust. Furthermore, a flat sheet of paper has the Euclidean
dimension DE=2. If we scrunch up it into a ball, the obtained
structure is a volume, having the dimension DE=3. But, when we
unfold a paper, the new structure is neither a sheet nor a ball. This
structure occupies the space but not completely. What is the
dimension of this structure? Somewhere between 2 and 3! These
surprising conclusions belong to the concept of the fractal dimen-
sion, permitting the description and comparison of different com-

plex shapes and phenomena.
Fractal shapes and signals are characterized by the following fea-
tures (1-2):
1. They do not have characteristic (finite) length. This feature is
documented over the coast line example. The smaller the setting
of the measuring device, the longer the resulting measurement
will be, since the more details are accounted. On the contrary,
smooth curve has a definite length and it can be measured as
accurately as necessary.
2. They exhibit the self-similarity behavior. A structure is said
to be self-similar if it can be broken down into arbitrary small
pieces, each of which is a small replica of the entire structure.
Small pieces can be obtained from the entire structure by a simi-
larity transformation - by using a scale factor less than unity. For
instance, as producing copies from the photocopier machine.
However, note that if a structure is self-similar it needs not to be
fractal.
3. They have non-integer dimension, usually greater than corre-
sponding Euclidean dimension.
B. Deterministic fractals
Deterministic fractals are artificially generated structures obtained
under a simple production rule. There is no element of random-
ness in the object production. The generation of deterministic
fractal starts with the initial element - the initiator, which is scaled
down with the scale factor, r<1, and modified by applying the
generator or the production rule. Several examples of determinis-
tic fractals will be reviewed here.
B.1. Cantor Set The initiator is a line of length d. The produc-
tion rule is as follows: Divide a line by 3; remove its middle third;
repeat the procedure for each of two remaining parts. Continue on
in this way. In each step the same structure is obtained but to a
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Figure 3. Self-similar object - fractal coast - of infinite complexity: repeating after
6 magnifications, (c) R.F. Voss, from (1) Figure 4. Illustration of the concept of fractal dimension

Figure 5. Cantor Set: the inititator (the firs row) and the first four construction
steps



smaller scale (1). Figure 5 visualizes the construction from the
initiator (the first row) to the fourth step.
B.2. Von Koch Curve The initiator is a line of length d. The
production rule is: Take the initiator; divide it by 3; replace its mid-
dle third by two equal segments of side d/3 forming an equilater-
al triangle; repeat the procedure for each of four lines of length
d/3. The procedure is illustrated in Figure 6, for the first three suc-

cessive steps (1).
A version of the Koch Curve is the Koch Snowflake (or, Koch
Island). The initiator is a polygon, for instance an equilateral tri-
angle as in upper left side in Figure 7. The production rule is the
same as for the Koch Curve, as depicted in Figure 7 for the first
three steps. 
Note that the Koch Curve and the Koch Snowflake tend to have
infinite lengths after infinite iteration steps. Namely, assuming the
initiator has the length of unity, d=1, after the first step the
obtained structure has the length d1=Nxr=4x1/3=4/3, since the
number of copies is N=4, and the scale factor is r=1/3. After the
second step the length is d2=Nx(Nxr)xr=(Nxr)2=(4/3)2, i.e., after
the ith step the length is di=(Nxr)i=(4/3)i. The Koch Curve
(Snowflake) is continuous but nowhere differentiable as i®¥.
Note that the Koch Snowflake always has a finite area. The

unforeseen property that the curve has infinite length but finite
area is one of the reasons why such curves are known as the
"monster curves". 
B.3. Sierpinski Carpet The initiator is a rectangle, upper left
in Figure 8. The production rule is: Take the initiator; divide each
side by 3; remove the middle part; repeat the procedure for each

of eight remaining parts.
C. Characterization of fractal structures
A fractal dimension is a fundamental analytical parameter for
describing self-similar structures. Traditionally, monster curves or
surfaces are classified via point-set topology. Remember that
curves have a topological dimension of one, surfaces have a
dimension of two, etc. Historically, Felix Hausdorff was the first
who defined a non-integer dimension in describing monster func-
tions (5). It is not trivial to calculate the Hausdorff (or Hausdorff-
Besicovitch) dimension for even simple sets (1-2). Later on, sev-
eral methods for determining fractal dimension were derived (1-
3). For deterministic fractals fractal dimension is assumed as a
similarity dimension, DS.
For a bounded set A in Euclidean n-space is said to be self-simi-
lar if A is the union of N non-overlapping copies of itself, each of
which has been scaled down by a ratio r<1 in all coordinates.
Between N and r the following relation is valid

(1a)
wherefrom the similarity dimension is 

(1b)

From (1) the similarity dimension for the Cantor Set is

since this structure is generated from N=2 parts (lines) repeated
into the scale r=1/3. Instead of initial line (having dimension
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Figure 6. The first three steps in the construction of the Koch Curve

Figure 7. The initiator and the first three steps in the construction of the Koch
Snowflake

Figure 8. The initiator and the first three steps in the construction of the Sierpinski
Carpet
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DE=1), the structures in next steps tend to line-like quasi-point
form having fractal (similarity) dimension between zero and unity. 
For the Koch Curve, generated by the procedure illustrated in
Figure 6, the similarity dimension is 

since N=4 and r=1/3. Instead of the straight-line (initiator), hav-
ing DE=1, the successive structures partially occupy a space, so,
the dimension is greater than unity. Similarly, for the Sierpinski
Carpet the similarity dimension is

The ranges in the value of fractal (similarity) dimension charac-
terize the type of the fractal. The structure having the fractal
dimension between 0 and 1 is known as the fractal dust, the
structure having the fractal dimension between 1 and 2 is the
fractal signal (fractal line), the structure with dimension between
2 and 3 is the fractal surface (fractal image), while the structure
with dimension between 3 and 4 is the fractal volume.
For better distinguishing fractals and non-fractals let us observe
the objects as in Figure 9: the straight-line and the rectangle. Both
objects (also the cube, not shown) are self-similar: each can be
broken into small copies, which are obtained by similarity trans-
formations. For instance, if the line (Euclidean dimension DE=1)
is divided by 3, i.e., of the scale factor r=1/3, one obtained N=3
parts. The fractal dimension of the obtained structure is 

which is identical to the Euclidean dimension of the straight-line.
The structure is self-similar but it is not fractal. A similar conclu-
sion can be derived for the rectangle (Euclidean dimension
DE=2) in Figure 9. By scaling each side with the scale factor
r=1/3, we obtain N=9 parts, each of them as a copy of initial fig-
ure. The fractal dimension of the new structure, from (1), is equal
to the Euclidean dimension

The structures in Figure 9 are self-similar but they are not fractals:
after scaling, the compexity of structures remains unchanged.
The general conclusion can be derived: fractal objects exhibit the
self-similar behavior but the opposite conclusion needs not be
fulfilled. 
Natural fractals have not so regular structure as deterministic
fractals. For instance, a magnified section of a coastline will
resemble the whole in some way but not exactly. This structure
exhibits statistical self-similarity. For such structures the similar-
ity dimension, given by Equation (1), is not appropriate, since no
precise production rule. Different methods for determining the
fractal dimension of such structures are derived. One of the most
popular algorithms for computing the fractal dimension is the
box-counting method, or the covering method. The method
involves covering a fractal with a grid of n-dimensional boxes
(hyper-cubes) with a side length e and counting the number of
non-empty boxes, N(e). For 1D signals (as time series) the grid is
one of squares and for 2D signals (as images), a grid of cubes.
Then the log-log plot of N(e) and 1/e is made. Now change a side
length progressively to smaller sizes and count the corresponding
number of nonempty boxes. From the slope of the fitted straight-
line to the plotted points of the diagram we derive the box-count-
ing dimension DB. Namely, as a limiting value, when e®0 the
number of boxes is proportional to e-D

B, i.e.,

(2)

Note that for a large scale of fractals, including classic fractals
such as the Cantor Set, the Koch Curve, the Sierpinski Carpet,
etc., the Hausdorff dimension and the box counting dimension are
very close, but this needs not to be fulfilled in general (6).  
Figure 10 illustrates the procedure of box-counting method. The
1D signal over the length L=1 (time, for instance) is under obser-
vation. If the box size is e1=1/10, Figure 10a, the number of non-
empty boxes is N1=25, and the corresponding box-dimension is
DB1(e)=1.398, obtained from log(25)/log(10). With smaller
boxes, for instance e2=1/20, Figure 10b, the number of non-
empty boxes is 38, thus DB2(e)=1.214, as log(38)/log(20). In
limiting case DB will approach the final value corresponding to
Equation (2).
Except the fractal dimension (the Hausdorf-Besicovitch dimen-
sion, the similarity dimension, the box-counting dimension), the
fractal (self-similar) object can be described alternatively by some
other descriptors, for instance, by compass dimension, the Hurst
index (H), etc. (1). The compass dimension is very useful in
determining line-like fractals (as a coastline). The Hurst index was
introduced by H. E. Hurst, a British hydrologist, who investigated
the Nile river fluctuations over decades. He established a new
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nonlinear statistics of scaled ranges known also as the R/S sta-
tistics. The H-index can be derived in several ways: through R/S
statistics, from the periodogram, index of dispersion, etc. It is
possible to establish the relation between the fractal dimension of
a random fractal line and the Hurst index 

D = 2 - H (3)

Generally speaking, the process having H=0.5 corresponds to a
pure Brownian motion (random walk) - without any correlations
between successive movements of particles. If H>0.5 there is a
positive correlation between incremental movements: if the graph
of movement increases for some t=t0, x(t0), then it tends to con-
tinue to increase for t>t0 - exhibits the self-similar behavior
(known as a long-range dependency, too) - and this tendency is
as strong as the Hurst index is closer to unity. For H<0.5 the
opposite is true. There is a negative correlation between the incre-
ments (a short-range dependency) and the system tends to oscil-
late.

MULTIFRACTAL SIGNALS AND PHENOMENA 

In real world most phenomena cannot be expressed in terms of
two limiting states such as: black and white, true and false, hot
and cold, 1 and 0, etc. Therefore, these aspects demand more
general mathematical objects for a successful description of lev-
els between two limiting states. Those more general objects are
called measures (1). Instead of one quantity, or measure, m,
describing the phenomenon in all scales - when we talk about
fractals, a set of measures, åmi (a sort of weight factors) describ-
ing statistically the same phenomenon in different scales has to
be used for describing such structures. Consequently, a theory of
self-similarity is extended from fractals to multifractals. For
instance, consider a 2D signal such as the gray scale image. For
describing an object of the image, the box-counting method is not
appropriate since it gives only a relation between non-empty
boxes and the box size, regardless of the signal level into the
boxes. Figuratively speaking, simple counting the boxes is like
counting money without caring about the value of banknotes.
By considering multifractals the signal value (the measure mi)
within the box is embedded into the process of signal characteri-
zation. At the first step, the quantity a

(4)

called the coarse H�lder exponent (1), is derived. This is the log-
arithm of the measure of the box, m(box), divided by the logarithm
of the size of the box. In this way the coarse H�lder exponent cor-
responds to the fractal dimension of the measure.  For a large
class of multifractals the value of a is restricted to an interval
[amin,amax], where 0<amin<amax<¥. Note that the value of a
is close to the corresponding fractal dimension of the structure
under observation; that means that for 1D signals (having the
level m) this value is close to 1, for 2D signals close to 2, etc.
Once a has been derived, the frequency distribution of this para-
meter has to be established, as follows. For each value of a, one
evaluates the Ne(a) of boxes of size e having the coarse H�lder
exponent equal to a. Since the total number of boxes of size e is
proportional to e-D

E, where DE is the Euclidean dimension of the
box, the probability of hitting the value of a is pe(a)=Ne(a)/e-D

E.
Drawing the distribution of this probability would not be useful
since as  e®0 this distribution no longer tends to a limit. Instead,
it is more appropriate to consider the functions 

(5)

or

(6)
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Figure 10. The box-counting method: (a) box size is e1=1/10, (b) box size is

e2=1/20
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As e®0, both functions tend to well-defined limits f(a) and C(a)
(1). The function f(a) is more widely used. When f(a) exists one
has

(7)

Such definition of  f(a) means that, for each a, the number of
boxes increases for decreasing e as Ne(a)~e-f(a). Exponent f(a)
is a continuous function of a. In many cases the graph of f(a) has
the parabolic shape, having the maximum near a=1 (for 1D sig-
nals), or near a=2 (for 2D signals). The values of f(a) could be
interpreted as a fractal dimension of the subset of boxes of size e
having coarse H�lder exponent a as e®0. Namely, when e tends
to 0, there is an increasing multitude of subsets, each character-
ized by its own a and a fractal dimension f(a). This is one of sev-
eral reasons for the term multifractals (1).
The concept of multifractals can be illustrated from the same 1D
signal as in Figure 10. The amplitude levels can be assumed as
measures - our example has 6 different levels (measures). Table
1 compares the number of boxes covering particular signal level,
for two box sizes.    

Several methods for deriving the function f(a), usually called mul-
tifractal spectrum, are known (1,7-9). The classification of spec-
tra f(a), used in multifractal image analysis, was derived by Levy
Vehel (10). The value a gives the LOCAL information of the point
regularity: for fixed measure (gray level) each image pixel is char-
acterized by its own value of a. For instance, image points hav-
ing a @ 2 are points where the measure is regular, i.e., where the
probability of the signal changes is small. Points with a ¹ 2
denote the regions where "something happens" - that means, the
non-regular zones exist. For instance, points with a<<2 or  a >>2
denote regions characterized by a high gradient or the regions of
discontinuities of the signal or its derivative, respectively.
The value of f(a) gives the GLOBAL information of the signal. For
instance, points on the smooth contour belong to the point-set
with f(a) close to 1, since this value corresponds to the Euclidean
dimension of the line, while the points on the homogeneous
region (surface) have f(a)@2, etc. The image analysis, from the
fractal point of view, was performed in (11-12). The paper (10)
described also an interesting way of applying (an inverse) multi-
fractal analysis in the classification of the microscopic sample
images. A similar analysis and object classification from the mul-
tifractal parameters was performed later on in (13-14).

MEDICAL SIGNAL ANALYSIS USING FRACTALS
AND MULTIFRACTALS 

Several papers investigated biochemical and medical signals and
shapes, from the fractal geometry point of view (11,15-19). It
was shown that, for humans, the fractal dimension decreases
after the stress and/or the trauma. For instance, in (20) the frac-
tal dimension of the morphology of the brain cells (the Purkinje
cells in cerebral cortex and the pyramidal cells in hippocampus -
regions of CAI) after bleeding (the cerebral hypoxia) was under
investigation. It was found that for laboratory animals (the pigs)
the fractal dimension decreases from the value of 1.72 (Purkinje)
and 1.54 (CAI), obtained for the control group, to the values of
1.57 and 1.46 (after medium bleeding of 20%), and to 1.38 and
1.36 (after the hard bleeding of 40%). Similar results were
obtained for humans: from the values of 1.62 and 1.54 (Purkinje
and CAI), for the control group, to the values of 1.56 and 1.47
(medium bleeding), and to 1.41 and 1.36 (severe bleeding).
Similar investigations were performed in (21), by analyzing the
heart-rate variability (HRV), measured on the kids after the burn
trauma. The R/S diagram of HRV signals is depicted in Fig. 11. As
indicated in Fig. 11, the Hurst index decreases as time after the
trauma increases: from 0.8 (healthy kids) to 0.7 (two days after
the trauma) and even to 0.55 (8 days after the trauma).

The multifractal analysis (MFA) can be successfully applied in
image analysis and object classification. A series of examples in
Figures 12-15 illustrates the MFA in object classification. The 256
levels gray-scale medical images of dimension 256x256 pixels
were under investigation. Several images were analyzed as 1D
vectors (corresponding to scanned images) and the others as 2D
signals. As a MFA tool the computer program FALFA embedded
into the packet MATPACK (8,9), based on the method derived by
Chhabra and Jensen (7), as well as a program HISTMF derived in
(13), which is based on the histogram method (1).

C f DEe a e( ) ( )= -

Figure 11. The R/S diagram of the HRV for kids after the burn trauma. The slope
of fitted straight-line equals to the H-index

Table 1. The number of boxes covering particular level of the signal in Figure 1.,
for two box sizes
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Images in Figure 12a-b correspond to digitized microscopy
images obtained in the Institute for Pathology and Forensic
Medicine at the Military Medical Academy in Belgrade. At first
glance, the image in Figure 12b labeled as "Sample 2" resembles
to the zoomed version of "Sample 1". However, through the MFA,
the difference between these samples is detected. Spectra f(a) of
these images are depicted in Figure 12c.  The Sample 2 has the
broader spectrum f(a), indicating to the higher variability of the
signal, while more significant difference is that the maximum of
this spectrum is obtained at somewhat greater value of a

(a@1.07) corresponding to the maximum of the Sample 1 (at
a@1.02). These differences suggest that the samples belong to
different tissues. Note that signals were assumed as 1D and the
program FALFA was used.

The previous results are checked, by using the program HISTMF
derived in (13). The results are depicted in Figure 13. Three sam-
ples were under the investigation (the first two are the same as in
Figure 12). All three samples have different multifractal spectra.
Note that the program HISTMF uses 2D signals, thus the f(a) has
the maximum near to a=2.
Examples in Figures 12 and 13 facilitate the decision whether the
samples belong to different tissues or not. The following exam-
ples, illustrated in Figures 14 and 15, will show that MFA can give
us the decision whether the zoomed part of an image belongs to
the particular image - parts of the same image have spectra sim-
ilar to the spectrum of the whole image.
In Figure 14a the microscopy image called "cells" is depicted,
while in Figure 14b only its zoomed part (under the white rectan-
gle in Figure 14a) is shown. Corresponding spectra f(a), obtained
by using FALFA, are depicted in Figure 14c. Now the maxima of
both spectra are at the same location of a (a@1.02) although the

spectrum of the zoomed part is broader, indicating the higher vari-
ability of this signal. 
This result is tested also by using the HISTMF routine. In Figure
15 the same medical image as in Figure 14 is shown, and two
zoomed parts are investigated. All spectra, for the original image
as well as for its magnified parts, have similar spectra with max-
ima at the same a=1.98.
Note that spectra obtained by using different methods are not
exactly the same (compare Figures 12c and 13, or 14c and 15)
but the global shape is very close. The method (7) applied in the
FALFA (a part of the MATPACK [9]) is derived from the Legendre
spectrum, producing smooth curve line of f(a) (as the ideal
parabola) but without fine details, which is observed by Levy
Vehel, too (10). Conversely, the HISTMF packet (13), based on
the histogram method (1), retains fine details but the spectrum is
not smooth. Also, this method has a drawback; it is useless for
negative (or alternate signed) signals (22). 

The idea of an inverse MF analysis (IMFA) for extracting charac-
teristic details from an image is exposed first in (10). If we asso-
ciate to each pixel the appropriate values of the parameter a and
the spectrum f(a), a sort of inverse multifractal is obtained. Then,
having in mind the local and the global behavior of quantities a
and f(a), we can extract some particular image features without
any image degradation. More precisely, points having a and f(a)

Reljin S.I.

Figure 12. The MFA in sample classification - different samples

Figure 13. The MFA in sample classification - different samples
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close to 1.0 corresponds to those belonging to the smooth line,
i.e., they are the edge points, while points having a and f(a) close
to 2.0 correspond to points on the flat surface. Any classic image
processing method (in space or in transform domain) for region
extracting is always followed by more or less image degradation
(23,24). Digital images with 256 gray levels are processed in this
way. Multifractal spectra are derived by using HISTMF routine
(13). Several illustrative examples are depicted in Figures 16-17.
In Figure 16 the IMFA is applied to the region extraction. The MRI
brain image, Figure 16a, is under investigation (13). The series of
images in Figure 16b-e contain image details characterized by dif-
ferent values of f(a): b) f(a)<0.7, c) 0.9<f(a)<1.1, d) 1.7<
f(a)<1.9 and e) f(a)@2.0. Outputs are binary images: pixels hav-
ing selected values of f(a) are remapped to level 1 (white) while
the rest of the pixels are black. As we can see only the charac-
teristic details are extracted without any image degradation - all
details retain full sharpness and the unchangeable shapes. 
The IMFA method seems to be a very promising tool in mam-
mography (14). Namely, in mammography, it is very important to
find calcification points into the tissue, as earlier as possible. An
ordinary method uses the mammogram analysis (the X-ray
images of the breast), but for better distinguishing fine details
high X-ray doses are necessary. The IMFA can be an additional
method in the mammogram analysis since in MF spectrum some
(almost) invisible details can be extracted from the parts of the
spectrum. This assertion is illustrated in Figure 17.
In Figure 17a a standard mammogram of dimension 1024x1024
pixels, with 4096 gray scale levels is depicted. From the whole
image, its part of dimension 100x200 pixels is selected - under
the white rectangle in Figure 17a - and for this part of image a
MFA is performed. In Figure 17b the magnified selected part is
depicted, while in Figure 17c its MF spectrum, obtained via

HISTMF program (13), is plotted. From this image, sub-images
containing pixels having particular values of the spectrum of f(a)
- Figure 17d-f, or having particular values of parameter a - Figure
17g-i, are derived. Regions of f(a) and a are chosen arbitrarily.
Extracted pixels are drawn as black ones while the background is
gray. 

CONCLUSION

The significance and the advantage of the fractal and multifractal
analyses (FA and MFA) in signal processing, compared to "clas-
sic" signal processing lie in the way of how the non-regularities
are assumed. The MFA tends to extract relevant information
directly from the singularities. More precisely, based on the par-
ticular value of a and/or f(a), the non-homogenous points can be
extracted from an original signal (10,13,14). By extracting image
pixels having particular values of a or f(a), which can be called
an inverse MFA (IMFA) we can extract particular image regions
usually invisible. Moreover, this procedure does not provoke any

Figure 14. The MFA in sample classification: a) Original image and b) its zoomed

part; c) Corresponding spectra

Figure 15. The MFA in sample classification: Original image (left) and its zoomed

parts (right) and their corresponding spectra
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image degradation. This feature is very important for many appli-
cations, particularly in medical diagnosis. The IMFA application in
medicine seems to be a very promising tool.
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FUSNOTE
1 The Collier's Encyclopedia, London, 1986, states "The total mileage of the Britain
coastline is slightly under 5,000 miles = 8,000 km, while the Encyclopedia
Americana, New York, 1958, states "Britain has coasts totaling 4,650 miles =
7,440 km." (1)
2 For instance, Theodor Weierstrass (1815-1897) created a continuous function
that was nowhere differentiable; Felix Hausdorff (1869-1942) defined (and docu-
mented for many of 'pathological' functions) the non-integer dimension for point-
sets which is a fraction greater than the corresponding topological dimension;
Georg Cantor (1845-1918) created infinite point-set exhibiting fractal behavior
(Cantor Set), Helge von Koch (1874-1924) and Waclaw Sierpinski (1882-1967)
defined some rules for creating fractal objects (Koch curve i Sierpinski carpet),
etc. (1,2).
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